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Liquids at interfaces: what can a theorist contribute? 
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Received 27 June 1990 

Abstract. This lecture reviews some recent theoretical and computer simulation studies of 
simple (atomic) fluids adsorbed at structureless substrates. Emphasis is placed on phase 
transitions, especially the various types of wetting transition. Criticality is associated with 
capillary-wave-like fluctuations in a continuously growing wetting film. This is of a subtle 
nature, which is best understood in terms of the pairwise correlation function of the fluid. 
Other surface phase transitions, such as prewetting and layering, occur out of bulk coexist- 
ence. Theory suggests that for sufficiently attractive substrates a sequence of first-order 
transitions, corresponding to the growth of new adsorbed liquid layers, should occur as the 
pressure of the bulk gas increases towards saturation at temperatures not too far above the 
bulk triple point. The extent to which such behaviour is found in adsorption experiments is 
discussed. We also argue that a simple tluid confined between two parallel hard-walls can 
exhibit surprisingly rich phase equilibria. 

1. Introduction 

One only has to weigh some recent summer school proceedings [l, 2 ,3 ]  and an edited 
volume [4] to realize that the subject of liquids at interfaces is enormous. Even if 
attention is restricted to equilibrium properties one finds that there has been a huge 
growth of interest in this area during the last decade. Significantly, many physicists have 
entered what was traditionally regarded as a part of physical chemistry. Clearly it would 
be inappropriate to attempt to give a detailed review, or even an overview, of the 
whole subject in this lecture. Since many speakers in various Symposia will describe 
experimental work on a wide variety of fluid interfaces and there will be talks on the 
theory of interfaces in complex systems such as polymers and amphiphilics, perhaps it 
is appropriate to present some theoretical work pertaining to extremely simple interfacial 
systems. 

We will consider atomic (argon-like) classical fluids near solid substrates, i.e. we are 
concerned with the nature of the substrate-fluid interface for a gas or liquid in equilibrium 
with an inert spectator phase. The solid substrate is deemed to be rigid on relevant time 
scales and its boundary is deemed to be smooth and planar on relevant length scales. 
Such a spectator phase exerts an external potential V(r)  on atoms in the fluid and acts 
as a geometrical constraint. The microscopic structure, thermodynamic properties and 
phase equilibria of the system are given by solving the statistical mechanics of the 
inhomogeneous fluid. Whether such a model of the substrate is realistic depends on the 
particular application but most theories of adsorption start with the above assumptions 
[5]  and go on to specify V(r )  appropriate to the experimental situation. Here we ignore 
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all effects associated with the atomic structure of the substrate and specialize to external 
potentials for which V(r)  = V ( z ) ,  where z is measured normal to the substrate. Thus, 
we exclude from the outset the rich physics associated with commensurate and incom- 
mensurate (floating) surface phases. Moreover, we restrict ourselves to fluid phases so 
that the average one-body density p(r )  = p ( z ) .  In spite of these constraints, a variety of 
phenomena do occur which are especially interesting from the viewpoint of phase 
transitions. As is often the case in statistical physics, idealized models can exhibit 
surprising features and provide new insight into fundamental issues. 

The paper is arranged as follows: in section 2 we recall some of the key results in the 
statistical mechanics of inhomogeneous fluids and apply these to the case of a fluid near 
planar hard-walls. For a single hard-wall the phenomenon of complete drying by gas of 
the wall-liquid interface occurs. This is an example of surface criticality in that long- 
ranged correlations develop at the interface and manifest themselves in a striking fashion 
in moments of the pairwise correlation function. When the liquid is confined between 
two hard-walls capillary-evaporation, which corresponds to the shifted bulk phase 
transition, occurs out of bulk coexistence. For sufficiently small wall separations the 
evaporation transition ends at a capillary-critical point which exhibits special features. 
By allowing the substrate potential to have an attractive as well as a repulsive component 
continuous wetting and drying transitions can occur when the fluid remains at bulk two- 
phase coexistence. Recent results from simulation and theory for such transitions in 
three dimensions are reviewed briefly in section 3. The accompanying critical fluctuations 
have no direct counterpart in bulk and lead to novel behaviour of the pairwise correlation 
function in the interface. In section 4 we mention some recent work on the prewetting 
and layering transitions. Adsorption at a strongly attractive substrate is sometimes 
characterized by a sequence of discrete layering transitions, each of which corresponds 
to the growth of a new, dense liquid layer, as the gas pressure is increased towards 
saturation. The extent to which such behaviour is found in continuum theories and in 
experiment and the nature of the critical points of the transitions is discussed. Section 5 
contains concluding remarks. 

2. Fluids near hard-walls 

2.1. Sum rules for inhomogeneousfluids 

We consider the fluid to be in contact with a reservoir with chemical potential p and 
temperature T.  The hierarchy of distribution functions is generated by successive func- 
tional differentiation [6 ,7]  of the grand potential Q with respect to u(r) = p - V(r )  at 
fixed T 

and 

0-' Gp(rl)/Su(r2) = G(rl7 r z )  %E p ( r l > p ( r z ) h ( r ,  3 '2) + - r z>p(r l ) '  ( I b )  

Here 8-l = kBT, p(r)  is the average one-body density and G(rl ,  r2), the density-density 
correlation function, is related to the total pairwise distribution function h. For a bulk, 
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homogeneous fluid h(r l ,  r2) reduces to g( (r l  - r21) - 1, where g(r)  is the usual radial 
distribution function. Manipulation of ( lb)  yields two key equations: 

where the prime denotes differentiation with respect to z ,  and 

~ ( z )  is the (dimensionless) local susceptibility of the fluid in a fixed external potential 
V(z). The zeroth transverse moment Go is defined by the transverse Fourier transform: 

dR exp(iQ R)G(z , ,  z , ;  R )  

with G(z  1, z,; R )  = C ( r , ,  r,) i.e. R and Q are transverse vectors, parallel to the substrate 
and R2 = (xI - x2)’  + ( y l  - y,)’ in three dimensions. Equation (3) is merely the gen- 
eralisation to inhomogeneous fluids of the well-known compressibility sum rule. G2, the 
second transverse moment of C, enters the formula for the surface tension o of the fluid 
in the external potential: 

( 5 )  

which is equivalent [7] to the Triezenberg-Zwanzig [8] formula. All of these equations 
are valid for arbitrary external potentials; they simplify considerably in the case of a 
hard-wall with 

Using the results that p(z) exp(PV,,(z)) is continuous and (d/dz) exp(-PV,,(z)) = 
6 ( z ) ,  equation (2) integrates to 

Go(Z, 0 )  = P ’ ( Z )  z > o  (7) 

and (3) gives 

X ( O + )  = ( 1 / B P w ) ( ~ P w / a , u ) T  = P b / P w  (8) 

where pw = ~(0’)  is the density at the wall and Ph = p ( m )  is the density of the bulk fluid 
far from the wall. Integration of (5) yields 

Po = -Gz(O+, O + )  (9) 

i.e. the second moment of G evaluated for both particles at wall contact is proportional 
to the total surface tension of the hard-wall fluid interface. Equations (7) and (9) were 
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Figure 1. Schematic density profile for a liquid near a hard-wall. In the limit ,U-+ y:! the 
thickness lof the intruding film of gas and the interfacial roughness El both diverge. 

derived by Henderson and van Swol[9], while (8) is simply a consequence of the familiar 
result for the contact density 

P w  = PP (10) 
wherep is the pressure of the bulk fluid. This set of results is not especially striking until 
one recognises that complete drying occurs at the wall-liquid interface. 

2.2. Complete drying and its repercussions 

When the bulk fluid is a dense liquid with p > p S a t ( T ) ,  the chemical potential at bulk 
coexistence, the density profile p(z) exhibits oscillations arising from packing effects near 
the wall. However, on reducing dp = p - psat towardszero the oscillationsdisappear and 
a film of low density 'gas' intrudes between the wall and the bulk liquid. This is illustrated 
in figure 1. The thickness 1 of the film diverges as 1 - (i3p)-P\ in the limit dp -+ 0, and 
the gas-liquid part of the interface is removed further from the wall exposing more of 
the wall-gas interface. For a three-dimensional fluid governed by van der Waals forces 
the exponent Ps = 4, whereas for interatomic potentials of finite range P, = 0, cor- 
responding to logarithmic growth. At bulk coexistence, p = p&t, the wall-liquid 
interface is a composite of the wall-gas (subscript wg) and the gas-liquid (subscript 1s) 
interface with surface tension U,, = U,,,, + q,; the contact angle 8 in Young's equation 
U,, = U,, + ulg cos 13 is equal to n. This phenomenon of complete drying, or wetting by 
gas, was predicted by the simple density functional theory of Sullivan [lo,  111 and was 
confirmed using more sophisticated versions [ 12-14]. The erosion of oscillations was 
found in some early computer simulations [15, 161 of liquids at hard-walls and the growth 
of thick drying films was observed in extensive simulations of a square-well liquid [7].  
Complete drying is expected to occur at all temperatures for which bulk coexistence 
occurs. 

What then are the implications of (7)-(10) in the limit p-+pLt? Equation (10) 
ensures that the density at contact pw < p,, the density of the coexisting gas at a given 
(low) temperature, consistent with the idea that drying should occur. That the local 
susceptibility at the wall ~ ( 0 ' )  should depend on p l ,  the density of the bulk liquid that 
is macroscopically far from the wall, is the surprising feature in (8). Equation (7) is also 
somewhat startling since it states that Go(l, 0) would be non-zero in the limit I+ x 

provided the density derivative in the edge of the film p'(1) remained non-zero in this 
limit. Indeed, this is the case for dimension d > 3, where mean-field theory is valid. 
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Capillary-wave arguments predict p‘ ( I )  - E ;’ as dp += 0, with the interfacial roughness 
Cl, which determines the width of the depinning liquid-gas interface, remaining finite 
ford > 3 but diverging as (-In dp)1/2 in d = 3.  Thus, Go(l, 0 )  is predicted to vanish only 
very slowly, as (-ln b ~ ) - ’ ’ ~ ,  in the approach to complete drying in d = 3. Perhaps the 
most striking result is that emerging from (9). In the limit p += p ,’,, we find G2(0+, 0’) = 
-@(aw, + qg); the second moment evaluated at the wall depends on the tension ulg of 
the liquid-gas interface that is macroscopically far from the wall. In order to appreciate 
the significance of these results it is useful to consider [17] the limit p+ p;l(T) where 
now the bulk fluid is gas. The density profile is simply that of the wall-gas interface so 
that pw and Go(O+, 0’) are the same as in the limit p+= pLI. However, ~(0’)  is pro- 
portional to p,, rather than p I ,  and G2(Of, 0+) = -@awg. Note that al, S a,,,, at low 
temperatures. 

The dramatic behaviour of the correlation functions at complete drying predicted by 
the formal sum rules have been confirmed, at the mean-field level, in explicit analysis 
[17] of the Sullivan version of density functional theory. This analysis reveals the rather 
complex structure of G(zl, z 2 ;  Q) in a drying film. In addition to the (capillary-wave 
driven) small-Q Wertheim behaviour [18] expected in the edge of the film: 

G(zi, 2 2 ;  Q) - Go(zi z2)(1 + E f Q ’ ) - ’  

Go(z1,zz) - P’(zl)”)Ei/@aIg 2 1 9 2 2  - 1  

2 1 5 2 2  - 1 (11) 

where the transverse correlation length Ell = [-G2(l, l)/Go(l, 1)]1’2 and 

there is a separate coherent fluctuation of the whole film, present for all z1 and z2.  This 
contribution involves the total tension B and has the form 

G(zi 2 2 ;  Q )  - P ’ ( ~ I ) P ’ ( Z ~ ) ( P ~  + @aQ2>-’ (12) 

at small Q. In the limit zl, z 2  + 0 the capillary wave contribution (11) is damped to zero 
leaving (12), which is sufficient to account for the sum rule predictions ( 7 )  and (9). 

It is important to recognise that the curious predictions of (8) and (9) at complete 
drying cannot be attributed to interfacial roughness. Although capillary-wave fluc- 
tuations lead to a diverging transverse correlation length Ell - (dp)-”ll, with vlI = 
(1 + @ , ) / 2 ,  in all dimensions El, which in terms of 511, is given by [19] 

where Eb is the bulk (gas) correlation length and w = (4@al,E?,-’, diverges for d s 3 
only. By contrast (8) and (9) are valid for all dimensions. The sum rule predictions reflect 
the structure of G(zl, z 2 ;  Q) in the drying film, rather than any interfacial wandering. 
We return to this issue in section 3 where we consider correlation functions at wetting 
and drying transitions for more general potentials. 

2.3. S u m  rules f o r  aJZuid confined between two hard-walls 

Suppose that the fluid is confined between two identical parallel substrates which have 
(infinite) surface area A but which are separated by a finite distance L. The system is 



SA20 R Evans  and A 0 Parry 

open so that atoms can pass freely in and out of a reservoir at fixed p and T .  An atom in 
the confined fluid experiences an external potential 

V ( z ;  L )  = V,(Z) + V , ( L  - 2 )  (14) 

where V, is the potential due to a single substrate. Confinement gives rise to the solvation 
forcef(L). This is defined [6] as an excess pressure: 

f =  - ( 1 / A w / w , , T  - P (15) 

wherep(p, T )  is the pressure of the fluid in the reservoir. Clearlyf- 0 as L + w. Using 
( l a )  and (14)fcan be re-expressed [20,21] as 

where we have used the property p ( L  - z )  = p(z). Another important result [21] follows 
using ( lb) :  

As was the case for a single substrate these results simplify considerably when V ,  = 
Vhw. The solvation force reduces to [21] 

f =  P - ' ( P w . L  - P w . x >  (18) 

where pu,L = p(O+) = p ( L - )  is the contact density for finite wall separation and pu,, is 
the corresponding quantity for a single wall, L = =, with the fluid maintained at the 
same p and T.  Formula (18) provides an elegant means of understanding the origin of 
the oscillatory solvation force that occurs for small separations. When the fluid is a dense 
liquid pw.L will reflect the packing of the atoms between the two walls. If L 2 an integral 
number of atomic diameters pu,L is significantly larger than the unconfined density pw,, 
andf i s  large and positive. When L is out of registry with the packing pw,L < pW,,  and 
negativefresults. As L increases the packing effects become less pronounced andf+ 0. 
Although there is no direct counterpart of (18) for arbitrary substrate potential, similar 
considerations apply [6] and the genesis of oscillatory solvation forces in liquids is readily 
understood via (16). 

The derivative o f f  with respect to L is proportional to the zeroth moment Go, 
evaluated with a particle at each (hard) wall. From (17) and (18) 

(df/aL),,T = P - l ( d P w , L / d L ) , , . T  = P-'GrJ(O, L).  (19) 

The local susceptibility at each wall depends on (df/d~)~,~, i.e. 

x(o+) = x ( L - )  e (l/Ppw,L)(dpw,L/ap)L.T = (l/pw.L)[(df/dpL)L.T -t Pbl. (20) 

These last two results are important at a capillary critical-point, where both derivatives 
offare divergent. In order to understand how such a critical point can arise it is necessary 
to consider the phase equilibria of a fluid confined by hard-walls. Complete wetting and 
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Figure 2. Schematic density profiles for the two phases that coexist at a point of capillary 
evaporation for a fluid confined between two hard-walls separated by a distance L. ( a )  
‘Liquid’ with drying films of thickness 1. ( b )  ‘Gas’. The chemical potential pL,,(T) is slightly 
greater than ,U,,,( T)-see text. 

wetting transitions are precluded as these necessitate films of macroscopic thickness, 
which cannot develop for finite L .  Nevertheless, interesting phase behaviour does occur. 

2 .4 .  Capillary evaporation and criticality 

We begin by recalling the Kelvin equation [22,23] for the shift of the first-order liquid- 
gas transition arising from confinement at fixed T below the bulk critical temperature 
T, X .  This predictscoexistence between ‘liquid’ and ‘gas‘ at a chemical potential pco given 
by 

@CO = Psa t  - P c o  = W W ,  - % l ) / L ( P l  - P g ) .  (21) 
If ohs > a,,,, i.e. the walls favour liquid and cos 8 > 0, capillary condensation of dilute 
‘gas’ to a dense ‘liquid’. filling the slit occurs at pco < psdt.  The less familiar situation occurs 
when the walls favour gas so that ahg < awl and cos 8 < 0, then capillary euaporation of 
the dense ‘liquid’ to a dilute ‘gas’ phase takes place for pco > ,usat, i.e. the fluid in the 
reservoir is a liquid. It is the second situation which pertains with hard-walls since we 
have seen cos 8 = - 1 in this case. Figure 2 shows the density profiles of the two coexisting 
phases. For sufficiently large L and, therefore, small Apco, drying films of thickness I 
will develop in the ‘liquid’ phase at coexistence. However, we expect I to be small (-1 
atomic diameter), even for L - 40 diameters [14]. 

The Kelvin equation (21) is exact in the limit L + =. Density functional results [14] 
for a model fluid between two hard-walls indicate that it remains accurate down to 
L - 20 atomic diameters for T/T,,, = 0.7. For L less than a certain critical value L, there 
is no phase transition and only one phase is present in the slit; the line of capillary 
evaporation (,U,,, L )  ends a critical point (p,, L J ,  as sketched in figure 3. Other critical 
points will occur for different temperatures giving rise to a line of capillary critical points 
in (1, L ,  T )  space [22]. 

The thermodynamics of capillary condensation and critical points has been discussed 
in some detail [24]. Here we merely summarize the features that are relevant to the hard- 
wall system. Capillary evaporation is signalled by a discontinuous fall in the adsorption 

l- = d z  ( P G )  - Pb) (22) 

from a ‘liquid’-like value to a ‘gas’ like value as L is reduced at fixed ,U or as p is reduced 
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Figure 3. Lines of capillary evaporation pco(L)  plotted (schematically) for different tem- 
peratures, T ,  > T ,  > T, .  These lines terminate in capillary critical points ( p c ,  L,, T )  which 
can be regarded as shifted bulk critical points. As T-, T,.% the critical wall separation is 
given by T, I - T -  L;"", where v = 0.63 is the bulk correlation length exponent. 

( b )  
I 
I 
I 
I 
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I 
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L T  

Figure 4. ( a )  The solvation forcef(L) for a liquid undergoing capillary evaporation at fixed 
temperature T a n d  p < p c ( T ) ,  and the corresponding plot of the zeroth moment Co(O, L ) .  
It is assumed that the transition occurs at a sufficiently small wall separation LT thatf(L)  is 
oscillatory in the liquid phase for L > LT.  ( b )  The behaviour of f ( L )  and G,,(O, L )  at a 
capillary critical point. As L is increased at fixed pc(T) (d f /dL)  and Go(O, L )  diverge at the 
critical value L,. At low temperatures L, may be sufficiently small thatf(L)  is oscillatory for 
L > L,. 

at fixed L. The solvation force also exhibits a discontinuity-see figure 4(a). A critical 
point is characterized by (dr /dp)  T , L c  or (dT/dL) T.y, diverging. Alternatively, one can 
require (df/dp) T,Lc  or (df/d L )  T , p c  to diverge-see figure 4(b). We now see that sum 
rules (19) and (20) make certain explicit predictions regarding the microscopic nature 
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of criticality for the particular case of hard-walls. Equation (20) indicates that the surface 
susceptibility x(O+) diverges as (df/dp),, while (19) implies that the zeroth moment 
Go(O, L )  is also divergent, as illustrated in figure 4(b) .  The latter result is quite striking, 
once one recognises that L, can be made arbitrarily large by increasing T towards Tc,m. 
The former becomes significant when we realize that the susceptibility at mid-point 
x ( L / 2 )  diverges as (dr /dp) r ;  this follows directly from (22) ,  assuming the integral 
over the finite slit does not introduce any additional singularities. 

The implication is that the fluid manifests its criticality throughout the slit, i.e. there 
is a single transverse correlation length 61, characterizing all relevant fluctuations. Since 
the correlation length can only diverge parallel to the substrates and the order-parameter 
for evaporation is simply the difference in r (or in f )  between the two phases, capillary- 
criticality, for any type of substrate, should lie in the two-dimensional king universality 
class. Thus, at fixed T and L = L,, the adsorption should have the form r - Tc - 
lp  - pCl1ia and, at fixed T and p = p c ,  the solvation force should vary as f - fc - 
1 L - Lc/ l i s ,  with critical exponent 6 = 15, the Onsager value. This is the behaviour 
sketched in figure 4(b) .  The line of critical points referred to above is a line of Onsager 
critical points. 

3. Criticality at wetting transitions 

In this section we consider a fluid near a single planar substrate that exerts an attractive, 
as well as a repulsive, external potential on the atoms of the fluid. Various types of 
surface phase transitions can occur for such a system-see the reviews [25-271. The 
wetting transition is the transition from partial to complete wetting of the interface 
between the substrate, or any spectator phase, and a fluid phase by a second fluid phase 
that coexists with the first. The transition is often induced by varying the temperature 
T ,  staying along the coexistence curve. For T < T, the thickness 1 of the film of intruding 
phase is finite, whereas for T >  T,l is of macroscopic extent. 1 may diverge dis- 
continuously (first-order transition) or continuously; then the transition is termed ‘criti- 
cal wetting’.If the bulk fluid, far from the substrate, is gas at p = p i l  partial wetting by 
the liquid, for T < T,, corresponds to contact angle I9 > 0 and complete wetting, for 
T 2 T,, has I9 = 0. At a drying transition, on the other hand, the bulk is liquid at 
p = p ,’,, and partial wetting by gas, for T < TD, has I9 > 0 whereas complete wetting by 
gas (drying), for T 2 TD, has B = n. In acomplete wettingregimeldivergescontinuously 
as p approaches pSal(T). (The approach to complete drying at a hard-wall, discussed in 
section 2.2, was a particular example of this latter behaviour.) Mean-field theories 
[25,26] for continuum fluids and lattice-gas models predict both first-order and critical 
wetting transitions: which type occurs dependson the choice of substrate-fluid and fluid- 
fluid potential functions. Computer simulations for continuum fluids in d = 3 have 
determined first-order wetting and drying transitions. van Swol and Henderson [28] 
studied, using molecular dynamics, a square-well liquid at a hard-wall with a weakly 
attractive square-well portion of depth E .  By varying E ,  at fixed temperature, they 
observed a weak first-order drying transition in which fluctuations play a major role [29]. 
Sikkenk et a1 [30] performed massive simulations, using the Delft Molecular Dynamics 
Processor, for a (truncated) Lennard-Jones fluid adsorbed at a ‘live’ substrate composed 
of Lennard-Jones atoms. By varying the ratio of the well depths for substrate-fluid and 
fluid-fluid interatomic potentials they found evidence for first-order wetting and drying 
transitions in their system. This was confirmed in later simulations [31] which made a 
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Figure 5 .  The two types of wetting transition. Complete wetting from off-bulk coexistence 
corresponds to path ( a )  p -+ ,u;,,(T) for T > T,. Critical wetting is associated with path ( b )  
where the wetting transition temperature T ,  is approached along bulk coexistence, ,U = 
p J T )  (full curve). Complete drying (dotted line) occurs when the bulk phase is liquid and 
P -+ P ,;t ( T ) .  

direct determination of contact angles. We are not aware of any simulation for a 
continuum fluid that yields a critical wetting transition in d = 3. Some early Monte Carlo 
simulations [32] for lattice-gas models in d = 3 found signatures of a first-order transition. 
Recent, more systematic, Monte Carlo studies [33] for a nearest-neighbour lattice gas 
with a contact surface field h i  showed that first-order, critical and tricritical wetting 
transitions do occur in such models. Experimental work on wetting transitions is 
reviewed in [25-271. As yet there is no direct evidence for any type of transition occurring 
at a temperature above the bulk triple point TI, in a single-component fluid at a substrate. 
There is ample evidence for the phenomenon of triple-point wetting, whereby complete 
wetting of the substrate-gas interface occurs exactly at Ttr; for T 2 TI, the substrate is 
completely wet by liquid whereas for T < TI, solid films of finite thickness are adsorbed. 

Our present interest concerns the nature of the critical behaviour associated with the 
continuous growth of a wetting film. As indicated above we can consider two different 
thermodynamics paths-see figure 5. Path ( a )  corresponds to complete wetting from off 
bulk coexistence at T 2  T,, where the relevant control field is ,usat(T) - ,U. Path ( b )  
denotes the approach to a critical wetting transition, where the control field is T, - Tat  
,U = ,usat. As was mentioned for the simulation studies, it is often more convenient to fix 
T and vary the strength E of the attractive substrate-fluid potential to induce critical 
wetting. The relevant field is E,( T) - E = 8 ~ ,  which is equivalent, thermodynamically, 
to T, - T. On both paths the interfacial profile would have the form shown in figure 1 
(for drying) so that the film thickness diverges as 

1 - I6p j - f i b  (complete) 1 - 1 6 ~  1 -p\(critical). 
Capillary-wave-like fluctuations develop in the liquid-gas edge of the films leading to a 
diverging transverse correlation length 

Ell - I6,u /-'ll(complete) - Id~I-~~~(cr i t ica l ) .  

The same fluctuations give rise to a singular contribution to the substrate-fluid interfacial 
tension (or excess grand potential) 

a s l n g  - ~ 6 , ~ l ~ - ~ ~ ( c o m p l e t e )  a s l n g  - 1 G~l*-~,(cr i t ical) .  
Although the same notation is employed for the critical exponents their values are 
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different for the two different paths. Moreover, their values depend on the form of the 
substrate-fluid and fluid-fluid attractive potentials. For algebraically decaying potentials 
the upper critical dimension d, < 3 [26 ,27]  so that the critical exponentsfor real systems, 
governed by van der Waals forces, should be described correctly by mean-field theories 
and the values are known, e.g. p, = f for complete wetting, as quoted in section 2.2. 
Fluctuation effects are insufficient, in d = 3 ,  to alter the critical exponents from their 
mean-field values when the substrate-fluid or fluid-fluid potential is long-ranged. For 
potentials that are exponentially decaying or of finite range, as one would usually employ 
in computer simulations, d, = 3 for both complete and critical wetting. Theincorporation 
of fluctuation effects has been tackled within the context of approximate renormalisation 
group (RG) calculations for effective interfacial Hamiltonians of the type 

H{I} = dR [ h l g ( V I ( R ) ) '  + U ( I ( R ) ) ]  (23)  

where U(I)  represents the interaction potential for the fluctuating film thickness I(R).  
These predict [34] that the exponents for complete wetting in d = 3 retain their mean- 
field values (ps  = O(ln), vl l  = 1 and as = 1) but the amplitudes of I and 511 are dependent 
on the parameter o = ( 4 n B o l g 5 f j - '  (see ( 1 3 ) )  which measures the interfacial stiffness. 
More significantly, for critical wetting, RG predicts that the critical exponents should be 
non-universal, i.e. dependent on w in d = 3 ,  when all potential functions are short- 
ranged. Mean-field gives pS = O ( l n ) ,  vll = 1 and as = 0. Monte Carlo simulations [35] 
for the same interfacial Hamiltonian find values of vll that are consistent with the RG 
results, at least for the small values of w investigated. Thus, fluctuations would seem to 
play a major role at the marginal dimension d = 3.  The situation is confused, however, 
by the Monte Carlo results of Binder and Landau [33 ,36] ,  for the d = 3 Ising model with 
contact surface field, which appear to yieldonly the mean-fieldvalue vll = 1 for asituation 
where w was estimated to be about 1 and RG for (23)  would predict U / ,  - 6. Various 
explanations have been proposed to explain the discrepancy, including the idea that the 
asymptotic scaling regime is very small for the d = 3 Ising model and had not been 
entered in the simulations of [33] .  Very recently Gompper etal[37] have reported Monte 
Carlo results for the solid-on-solid limit of the d = 3 king model with a surface. They 
show that this model lies in the same universality class as the Hamiltonian (23)  with the 
parameter o = f for all temperatures greater than the roughening temperature. With 
this value of U ,  uIl - 1.3,  a result which Gompper et a1 claim is not inconsistent with the 
data of Binder and Landau [33] .  Thus, there are signs that the controversy might soon 
be resolved. 

From the viewpoint of liquid state theory it is of some interest to enquire whether the 
striking results for critical behaviour obtained from effective interfacial Hamiltonians, 
which treat the fluctuating film thickness as the relevant order parameter, can be derived 
by methods appropriate to a full many-body Hamiltonian for a realistic continuum 
fluid adsorbed at a substrate. The effective Hamiltonian approaches do not provide a 
description of the density profile, nor of the pairwise correlation of the inhomogeneous 
fluid. How much information about criticality at wetting transitions can we obtain from 
statistical mechanical sum-rules and thermodynamic arguments? That progress was 
made in section 2.2 for the particular case of complete drying at a hard-wall persuades 
us that this is a meaningful query. In a recent paper [38] we were able to provide answers 
for both types of wetting transition when all relevant forces are short-ranged. We 
summarize the main conclusions here, omitting all details; the interested reader is 
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Table 1. Singular contributions to the transverse moments of the density-density correlation 
function G and the local susceptibility x ( z )  at the two types of wetting transition. Note that 
the thickness I of the wetting film and the transverse correlation length Ell diverge at the 
transition in all dimensions d,  whereas the derivative of the density profile ~ ' ( 1 )  - 5;' 
vanishesonly ford 6 3. a is amicroscopicdistance. Allunimportantfactorsofproportionality 
have been suppressed in this table. & E  measures the deviation of the field E from its value at 
the (critical) transition. 

Complete Critical 

referred to [38].  The only assumptions which are made are that (i) the Wertheim 
form (11) for G is valid in the liquid-gas portion of the interface (zl, z 2  - I )  and (ii) 
hyperscaling is valid, i.e. 2 - a, = (d  - 1)vl,. (In the surface problem hyperscaling 
asserts 2jf-I d i n g  - k g T . )  

For complete wetting, path ( a ) ,  use of the Gibbs adsorption equation for r, the sum 
rule for ( d r / d p ) T  and the two assumptions above are sufficient to determine the critical 
exponents uniquely, i.e. for d s 3 ,  v~l= 2/(d + l ) ,  a, = 4/(d + 1) and p, = (3 - d ) /  
(d + 1). In d = 2 these agree with the exact results determined for a solid-on-solid model 
in an external field. In d = 3 they reduce to the mean-field results quoted earlier. It is 
not possible to determine singular contributions to the transverse moments of G, except 
where zl, z2  - I, by formal manipulations for potentials other than the hard-wall. 
However, the explicit mean-field analysis for the Sullivan model, mentioned in section 
2.2, is not restricted to purely hard-walls. These results imply that the singularities 
obtained for hard-walls should apply quite generally to complete wetting. Table 1 lists 
the various singular contributions that are expected. 

In the case of critical wetting, path (b ) ,  surface thermodynamics, sum rules etc. are 
not sufficient to determine exponents uniquely. Now there are two relevant scaling fields, 
dp and &, rather than the single field dp which governscomplete wetting. Nevertheless, 
one can determine a rigorous relationship between exponents: 2 - a, = 2vll - 2p,, which 
is the analogue of the Rushbrooke relationship for bulk critical exponents. When this is 
combined with hyperscaling we find p, = (3 - d)v11/2 for d s 3. All critical exponents 
can be expressed in terms of a single independent exponent. The technical reason for 
such a simplification is that the analogue of the exponent 7 is zero for wetting transitions 
[26,27]. Singular contributions to moments of G and the local susceptibility x can be 
ascertained by making use of two extra sum rules [39,40],  involving derivatives of and 
of o with respect to E ,  the strength of the attractive part of the substrate potential. The 
results for critical wetting are also given in table 1. Once again an explicit mean-field 
analysis [38] agrees with the predictions of the sum-rules. A comparison of critical and 
complete wetting shows that while these transitions might seem similar at first sight, they 
have a very different character when examined in detail. Although correlations have the 
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same form, i.e. the same dependence on p’(1) and cl,, when both particles lie near I ,  this 
is not the case when one or both particles move away from the edge of the film to lie 
within a microscopic distance a of the substrate. In critical wetting Go(l, a), G2(a, a) 
and x(a) are divergent quantities, whereas they remain finite for complete wetting. 
Fluctuations manifest themselves in a more pronounced fashion for critical wetting, 
extending throughout the whole film. Indeed, it is possible to show that the transverse 
correlation length for particles close to the substrate defined by = (-G2(a, a)/ 
Go(a, a))”’, diverges as (d~)-’lI, i.e. in the same fashion as 511. In the case of complete 
wetting there is no such divergent correlation length; the structure of G(zl,  z2; Q) is 
somewhat more complex (see section 2.2), due to the modulation of the fluctuations. 

The predictions of the sum rule analysis have been confirmed for a solid-on-solid 
model in d = 2 that exhibits a critical wetting transition. Explicit analysis [41] yields the 
following results: 

These agree with the predictions in table 1, since ps = 1, V I I  = 2 and (Y, = 0 are exact 
results [42] for critical wetting in d = 2. The z dependence is in accord with general 
scaling arguments [41], valid in the strong-fluctuation regime (d < dJ:  

A scaling argument for complete wetting gives 

which has also been confirmed by an explicit calculation for the d = 2 solid-on-solid 
model [41]. 

Finally, we note that while it is not possible to derive explicit exponents for critical 
wetting using purely formal techniques, it is possible to derive a relationship between 
the two lengths 1 and by effecting a Gaussian unfreezing of capillary-wave-fluctuations 
on the mean-field density profile [40,38]. Use of sum-rules yields the result [38] 

The RG results [34] for the Hamiltonian (23) are consistent with (27). Thus, we are 
confident that if a critical wetting transition were to be found in d = 3 for a continuum 
fluid with short-ranged forces, the critical exponents would be non-universal, i.e. w 
dependent. Ford < 3, however, wherefluctuationsareverystrongand EL, the interfacial 
roughness, is of the same order as I ,  the film thickness, Gaussian unfreezing is expected 
to fail [43]. 
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Figure 6. Schematic phase diagram for a fluid exhibiting a first-order wetting transition at 
T = T,. The dashed line is the prewetting line p,,,,(T) where thin and thick films coexist. The 
full curve is the bulk coexistence curve p s d , ( T ) .  
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Figure7. Schematic phase diagram for ethylene adsorbed ongraphite, The chemical potential 
relative to that of the bulk liquid ( p  ,) is plotted vertically. Only the multilayer region is 
described; other phases exist at low coverage and low temperature. Solid lines represent 
first-order layering transitions terminating at critical temperatures T,(n). ?L, 3~ etc denote 
bilayer, trilayer liquids. The dashed lines represent (continuous) melting transitions from 
solid (s) to liquid (L) phases. This diagram is based on data from [ 5 2 , 5 3 ] .  

4. Other phase transitions 

Wetting (or drying) is not the only phase transition that can occur at a substrate-fluid 
interface. Under certain circumstances layering or prewetting transitions will occur. 

If the wetting transition is first-order it is accompanied by a line of first-order 
prewetting transitions out of bulk coexistence, i.e. at pLpw(T) < pSat(T)-see figure 6. 
The adsorption r jumps discontinuously from a value characteristic of a thin adsorbed 
film to one characteristic of a thick liquid film, On increasing p further r increases and 
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diverges a sp  + p ( T ) .  At low temperatures the prewetting line meets the bulk coexist- 
ence curve tangentially at T = T, while, at high temperatures, it terminates at the 
prewetting critical temperature T,,,, where the distinction between thin and thick 
vanishes. For T > T,,,, r increases continuously with p .  First-order wetting and associ- 
atedprewetting were first predicted by Cahn [44] and Ebner and Saam [45]. Monte Carlo 
simulations for a lattice-gas model [32] and for a Lennard-Jones gas at a substrate [46] 
confirm the existence of the prewetting transition. There is, as yet, no compelling 
experimental evidence for such a transition. Theory and simulation predict that the 
prewetting line lies very close to bulk coexistence, I ppw( T )  - ,usat( T )  1 is only a few per 
cent of pSa1(T), and is short in temperature, i.e. T,,, - T, may be only a few degrees. 
Prewetting criticality is expected to lie in the d = 2 Ising universality class since (i) the 
order parameter is the difference in film thickness or adsorption and (ii) only the 
parallel correlation length cl, can diverge (the film thickness remains finite at Tpwc). This 
conjecture has been confirmed by extensive Monte Carlo simulations, in conjunction 
with a finite-size scaling analysis, for a lattice-gas model [47]. The resulting exponents 
are, to within statistical error, equal to the Onsager values. 

Layering transition is the name given to the discontinuous increase in adsorption, 
associated with the growth of a new adsorbed layer of a dense phase, that occurs when 
the gas pressure, or chemical potential, is increased at fixed temperature for sufficiently 
attractive substrates. The existence of a series of such transitions at temperatures below 
the bulk triple point has been established in many adsorption experiments for rare-gases 
and small molecules adsorbed on graphite-see e.g. [48,49] and references therein. If 
solid-like layers develop it is not too surprising that the growth takes place in dis- 
continuous jumps. Lattice-gas models of adsorption predict [50,32] an infinite sequence 
of first-order transitions, provided T,  is located at T = 0. Each of these transitions has 
its own critical temperature T,(n), above which the new layer grows continuously with 
increasing p .  As n -+ x T,(n) approaches the roughening temperature TR of the lattice 
model. For T > TR there are no layering transitions. One might suspect that the dis- 
creteness of the transitions is imposed by the discreteness of the lattice. It is of interest 
to enquire whether such transitions occur in a continuum treatment, as would be appro- 
priate to gas adsorption at temperatures above the bulk triple point TIr. Whilst it should 
be impossible to have infinitely many transitions for T > Ttr, since the liquid-gas interface 
is always rough, is it possible to have several transitions between layered liquid films? 
Density functional calculations [51], based on a non-local treatment of the hard-sphere 
free-energy functional [6], have found a large number of layering transitions, similar to 
those obtained in lattice-gas models. The layering arises from the packing of the atoms 
in the presence of the substrate potential. The critical temperatures Tc(n)  are calculated 
to be no more than 20 or 30 K above TIC.  Theory predicts discrete transitions from a 
highly structured liquid film with n layers, to one with n + 1 layers. Since the theory is of 
mean-field character it omits the effects of roughening. It would be important to confirm 
such layering behaviour by computer simulation [60]. There is a growing amount of 
experimental evidence, for gases adsorbed on graphite, that transitions between layered 
liquid films do take place for T > Ttr. Ethylene [52,53], ethane [54] and oxygen [55] are 
cases, see figure 7,  where up to seven or eight discrete steps in the adsorption have been 
resolved in ellipsometric measurements or heat-capacity studies. Note that the criticality 
of layering transitions should also lie in the d = 2 Ising universality class. Heat-capacity 
measurements for methane on graphite [56] obtain a value of /3 = 0.127 k 0.02 for the 
order-parameter exponent at the sub-monolayer liquid-gas transition. For the mono- 
layer-bilayer transition in C,D, on graphite the experimental data [57] are consistent 
with /3 between 0.08 and 0.17. Recall that the Onsager value is /3 = 4. 
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5. Concluding remarks 

We have attempted to show that the theory of simple fluids at substrates remains an 
ebullient subject. For those more accustomed to working with bulk phase transitions 
and critical phenomena it might seem surprising that purely formal techniques (sum 
rules and surface thermodynamics) can be made to yield so much information about the 
nature of criticality at interfaces. It is, of course, the presence of a spatially varying 
external potential, which induces surface phase transitions in the first place, that gives 
rise to a new battery of statistical mechanical techniques and allows us to make progress. 

The theoretical work has posed several challenges for computer simulation. We have 
mentioned already the need to understand layering transitions in the vicinity of the bulk 
triple point. Determining the locus of the line of critical temperatures T,(n) would be 
particularly relevant to experiments on multilayer adsorption, see figure 7. Testing the 
detailed predictions made for critical wetting will be extremely demanding. First one 
has to find the transition! The recent work of Henderson and van Swol[29] shows that 
even sophisticated density functional theories cannot be relied upon to predict the 
correct order of the drying transition for given potential functions. Even if a suitable 
system were found if would be an enormous effort to measure the appropriate correlation 
functions and thermodynamic functions with sufficient accuracy to determine critical 
exponents etc. Although the effects of capillary-wave fluctuations are especially rich at 
this transition these are not readily amenable to investigation in continuum fluids. For 
confined fluids simulations should be significantly easier. Capillary condensation has 
already been investigated in some detail (see [58] for a brief review), and evaporation 
is essentially the same phenomenon. Nevertheless, confirming the two-dimensional 
character of the capillary critical point is certainly a challenge! 

The experimentalists must decide for themselves what, if anything, from this story 
is relevant to them. They will argue, not unreasonably, that there are no hard-walls in 
nature, or that the contact angle 8 will never equal n so complete drying cannot occur. 
But this does not mean our results for the idealized cases are irrelevant. Complete drying 
is equivalent to complete wetting, which certainly does occur for real fluids at real 
substrates. Capillary evaporation does not require two hard-walls; it will occur provided 
8 > n/2. Thus, if one can find a pure liquid that has a contact angle >n/2 on mica, 
solvation force measurements, of the type pioneered by Israelachvili [59] for liquids 
between two crossed mica cylinders, should show the features illustrated in figure 4. 
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